If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x-x^2+180=0
We add all the numbers together, and all the variables
-1x^2+10x+180=0
a = -1; b = 10; c = +180;
Δ = b2-4ac
Δ = 102-4·(-1)·180
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{205}}{2*-1}=\frac{-10-2\sqrt{205}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{205}}{2*-1}=\frac{-10+2\sqrt{205}}{-2} $
| 9x+14+63=180 | | x-5+8x=32 | | -7.2x=-21.6 | | 108+6x=192 | | 7v-2=3v+8 | | n(4n+13)=-4 | | −15x−21=5x+79 | | 18y−14y+3y−4y+2y=20 | | x2‒9x+15=0 | | 9x+14+63=360 | | 2z-z+z=20 | | 20s-9s-10s+s+s=15 | | -9p-3=-19 | | g÷38=4 | | 40=w+36 | | 3x=30+4x+50/2 | | h^2+25h-21=0 | | k-20=13 | | 169=38-v | | r+70=120 | | -2(5x-3)=2(-3x-15) | | 2(n-3)=5n-27 | | (14y+1)+(9y+2)=141 | | 5x-3+15-x=24 | | 3(x+5)+1=7 | | h^2+25h-6=0 | | 0x+1=4x+2 | | -7+1=-5x+33 | | (5x+3)+(8x+8)+(2x+4)=180 | | {1}{3}(n+1)={1}{6}(3n-5) | | 2n+1=n/4+5n/3+5/3 | | g-28=60 |